Final Project - Word Cloud
# Here are all the installs and imports you will need for your word cloud script and uploader widget
!pip install wordcloud
!pip install fileupload
!pip install ipywidgets
!jupyter nbextension install --py --user fileupload
!jupyter nbextension enable --py fileupload
import wordcloud
import numpy as np
from matplotlib import pyplot as plt
from IPython.display import display
import fileupload
import io
import sys
# This is the uploader widget
def _upload():
_upload_widget = fileupload.FileUploadWidget()
def _cb(change):
global file_contents
decoded = io.StringIO(change['owner'].data.decode('utf-8'))
filename = change['owner'].filename
print('Uploaded `{}` ({:.2f} kB)'.format(
filename, len(decoded.read()) / 2 **10))
file_contents = decoded.getvalue()
_upload_widget.observe(_cb, names='data')
display(_upload_widget)
_upload()
def calculate_frequencies(file_contents):
# Here is a list of punctuations and uninteresting words you can use to process your text
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
uninteresting_words = ["the", "a", "to", "if", "is", "it", "of", "and", "or", "an", "as", "i", "me", "my","in", \
"we", "our", "ours", "you", "your", "yours", "he", "she", "him", "his", "her", "hers", "its", "they", "them","for", \
"their", "what", "which", "who", "whom", "this", "that", "am", "are", "was", "were", "be", "been", "being","the", \
"have", "has", "had", "do", "does", "did", "but", "at", "by", "with", "from", "here", "when", "where", "how", \
"all", "any", "both", "each", "few", "more", "some", "such", "no", "nor", "too", "very", "can", "will", "just","on"]
# LEARNER CODE START HERE
word_count = {}
final_text = []
for word in file_contents.split():
text = ""
for letter in word.lower():
if letter not in punctuations and letter.isalpha():
text += letter
if word not in uninteresting_words:
final_text.append(text)
for word in final_text:
if word not in word_count:
word_count[word] = 0
word_count[word] += 1
#wordcloud
cloud = wordcloud.WordCloud()
cloud.generate_from_frequencies(word_count)
return cloud.to_array()
# Display your wordcloud image
myimage = calculate_frequencies(file_contents)
plt.imshow(myimage, interpolation = 'nearest')
plt.axis('off')
plt.show()
Comments
Post a Comment